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A solution has been found, by the method of finite integral transfor-
mations, of the heat conduction equation for a hollow cylinder,
heated asymmetrically around its perimeter, under general boundary
conditions. Formulas are given which reduce the problem with non-
uniform boundary conditions to an equivalent problem with uniform
boundary conditions.

Solutions have been given in [1, 2] of the heat con-
duction for hollow cylinders heated symmetrically
around their perimeter, under various nonuniform
boundary conditions. These solutions were obtained
by the method of finite integral transformations, and
therefore, as has been shown by Greenberg [3], they
cannot satisfy nonuniform boundary conditions at the
boundary. Substitutions were given in {4] which allow
a problem with nonuniform boundary conditions to be
reduced in certain cases to a problem with uniform
boundary conditions. We note, however, that of the
six expressions given, only two (1 and 3*) satisfy the
nonuniform boundary conditions on both surfaces.
There are evidently errors in the remaining expres-
sions.

In the industrial practice, especially in the tube
manufacturing industry, massive tubes are often
heated asymmetrically around their perimeter.

There is therefore interest in solving the following
problem of heat conduction in hollow cylinders under
general nonuniform boundary conditions:
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We shall solve the problem by the method of finite
integral transformations [5]. For the solution obtained
to satisfy the nonuniform boundary conditions, we
shall represent the desired function in the form

*This is the numbering of [4].
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where u(r, ¢, 7) must satisfy the uniform boundary
conditions, while the functions z(r) and f (r) must be
continuous in the interval [R;, Ry, and defined in such
a way that t(r, ¢, 7) satisfies the nonuniform boundary
conditions.

Substituting (6) into (1)—(5), we obtain a system for
determining the function w(r, ¢, 7).
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Then the functions z(r) and f(r) must satisfy the fol-
lowing boundary conditions:
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We note that:
with boundary conditions of the first kind

—by=by=ly=hy=1, ay=a,=0,

$;(i=1,2) are the temperatures of the surfaces;
with boundary conditions of the second kind

Ga=a=»%r by=b=0 —k=k=1,

i are the surface heat fluxes;
with boundary conditions of the third kind

G=ay=% by=0, by=k=0, k=—aqa,

¥; are the temperatures of the surrounding media.

Following [6], we shall try to make the chosen
functions z(r) and f(r) solutions of the expressions
enclosed in the last two parentheses of (12).

We give expressions for the functions z(r) and f(r)
below.

1. The boundary conditions are of the first kind
(¥4 # ;) on both surfaces,

=1, f()= l"_l(r%@, by=1.

2. The boundary conditions are of the second kind
(¥, = ¥,) on both surfaces,
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3. The boundary conditions are of the third kind
(¥, = %;) on both surfaces,
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4. Mixed boundary conditions of the first and sec-
ond kinds:

a) on the inner surface—first kind, on the outer—
second kind,

z(N =1, [(r)=— (RN In(Ryr), k;=0,

b) on the inner surface—second kind, on the outer—
first kind,

ok, In2r
Ry
5. Mixed boundary conditions of the first and third
kind (¥, = ¥,):
a) on the inner surface—first kind, on the outer—
third kind,

2(r) = —

» f(=1, k=0

z(r) =1,
A

ay

f{r)= In(R/r) /[lnw— 5 (l—m)], ks =1,

b) on the inner surface—third kind, on the outer—
first kind,
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- A l—o
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6. Mixed boundary conditions of the second the third
kinds:

a) on the inner surface—second kind, on the outer—
third kind,

20 =— 2R mornR+-2, f)=1, k=0,
A a,
b) on the inner surface—third kind, on the outer—

second kind,

zm=hfw=%MWﬁ L

;0

ky = 0.

The expressions for z(r) and f(r) presented in
paragraphs 1 to 6 also cover the special cases when
uniform boundary conditions are assigned on one of
the surfaces.

¥ ¢, = ¥, = 0, we may of course put z(r) = f(r) = 0.

Ify, =9, = ¢ = 0, # and P, having the same dimen-~
sion (cases 1,2, 3, 5a and 5b}), we must put f(r) = 0. In
all the remaining cases the values of z(r), f(r), and k3
stay unchanged.

All the values of z({r) and f(r), besides those given
in paragraph 2, are solutions of the differential ex-
pressions enclosed in the last two curved brackets
of (12). The values of these expressions for the case of
paragraph 2 are constant.

Eliminating the differential operators with respect
to ¢ with the aid of an integral transformation in the
interval [0, 27] with the kernel [5]
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m=40, 1, 2, 3, ..., we shall reduce our problem
(7)—(11) to the form
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where
In
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b

2=
FV(I,T)=5F(T, P, T)K(y7 (P)dq)’
0

2%
uvo(r) = S uo("s ‘P)K(Vr (P)dq’
0

The kernel of the integral transformation which per-
mits us to eliminate differential operations with
respect to r in (16)—(18) will be

Mm (nv f)_ = rMm,n (r)’ (20)

m,n

where My, p(r)is an eigenfunction of the problem
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The solution of (21) gives the cylindrical functions
M all} = Arifz,nl 'm.n + Bm nN ( o ) 24
o (1) (P‘ Rz) Lo R, (24)

where the Iy (x) are Bessel functions of the first kind
and order m; Ny, (x) is a Neumann function of order
m, and ﬂm’n = ﬁm,n. R,.

Substituting (24) into (22) and (23), we obtain the
characteristic equation for the eigenvalues ”fn, n
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We shall find, similarly, that, to an accuracy up
to an arbitrary multiplier, which we may conveniently
take equal to unity, the constants Ay, p and B
(24) have the form:
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We shall determine the normalizing denominator
[5] from the expression
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Having accomplished the integral transformation
of the problem (16)—(18) in the interval [R,, R,] with
kernel (20), we obtain an ordinary differential equation
of the first order
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The solution of (29), allowing for (30) will be
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Carrying out the inverse transformations, we obtain
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and finally,
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My, (n, r) is determined from (20), taking account
of (24), (26), and (28); F(r, ¢, T)—from (12); uy(r, ¢)—
from (11).

Thus, the temperature field of the hollow cylinder
in the general case is determined by expression (6),
taking account of (31)—(33).

If, besides (4), we are given the condition

tr, 9, 1) =1t(r, —o, 1),

which in the general case must be satisfied also by the
functions Q(r, ¢, T), ¥i(@,T), and ty(r, @), then the sec-
ond sum in (31), containing sin me, is equal to zero,
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since the kernel L(v, ¢) with ¥ = 2m + 1 and uym+1,n
is equal to zero. If the internal heat sources Q. and the
initial and boundary conditions are independent of angle
¢, then from (31)—(33) we may obtain the correspond-
ing expression for the temperature field of a symmet-
rically heated hollow cylinder.

In this case, m = 0, and then

t(r, 1) =2(N)Yu(x) +F () [ (v) — Ry (D +

. T R; t
+§exp[“‘ug,n t}ng + a..SL(T)dr]‘a;g‘bglF(r,'c)Mo(n,r) %

Xexp[uﬁ,n o ——afL(r)dr]ﬁ”uo(r)Mo(n, par}- 89
R b Re

2

Then py n, My(n, r) are determined, respectively,
from (25) and (20), taking account of (24), (26) and
(28) with m = 0. The form of the functions z(r) and
f(r) remains unchanged.

Expressions (31) and (34) cover all possible com~
binations of uniform and nonuniform boundary con-
ditions of the first, second, and third kinds, and be-
cause the solutions were obtained in the form of (6),
they satisfy the nonuniform boundary conditions both
inside and on the boundaries of the interval [R;, R4].

NOTATION

t,r, ¢, 7 are the current temperature, radius, an-
gle, and time; a, A are thermal diffusivity and ther-
mal conductivity; R,;, R, are the inner and outer radii
of the tube; w = R, /Ry; @,, ay are coefficients of heat
transfer from the inner and outer surfaces of the tube;
4 = R, — R, is the tube wall thickness.
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